Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(14): 3133-3147, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37014811

RESUMO

High-resolution photoelectron spectra of vibrationally pre-excited vinoxide anions (CH2CHO-) are reported using the recently developed IR-cryo-SEVI technique. This method is combined with a newly developed implementation of vibrational perturbation theory that can readily identify relevant anharmonic couplings among nearly degenerate vibrational states. IR-cryo-SEVI spectra are obtained by resonant infrared excitation of vinoxide anions via the fundamental C-O (ν4, 1566 cm-1) or isolated C-H (ν3, 2540 cm-1) stretching vibrations prior to photodetachment. Excitation of the ν4 mode leads to a well-resolved photoelectron spectrum that is in excellent agreement with a harmonic Franck-Condon simulation. Excitation of the higher-energy ν3 mode results in a more complicated spectrum that requires consideration of the calculated anharmonic resonances in both the anion and the neutral. From this analysis, information about the zeroth-order states that contribute to the nominal ν3 wave function in the anion is obtained. In the neutral, we observe anharmonic splitting of the ν3 fundamental into a polyad feature with peaks at 2737(22), 2 835(18), and 2910(12) cm-1, for which only the center frequency has been previously reported. Overall, 9 of the 12 fundamental frequencies of the vinoxy radical are extracted from the IR-cryo-SEVI and ground-state cryo-SEVI spectra, most of which are consistent with previous measurements. However, we provide a new estimate of the ν5 (CH2 scissoring) fundamental frequency at 1395(11) cm-1 and attribute the discrepancy with previously reported values to a Fermi resonance with the 2ν11 overtone (CH2 wagging).

2.
Chem Soc Rev ; 52(3): 921-941, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36649126

RESUMO

Applications of vibrational spectroscopy throughout the field of physical chemistry are limited by detectors with poor temporal resolution, low detection efficiency, and high background levels. Up to now, the field has relied upon detectors based on semiconducting materials with small bandgaps, which unavoidably leads to a compromise between good spectral response and noise at long wavelengths. However, a revolution in mid-infrared light detection is underway based on the interactions of photons with superconducting materials, which function under fundamentally different operating principles. Superconducting detectors were first used to detect light at shorter wavelengths. However, recent developments in their sensitivity toward mid-infrared wavelengths up to 10 µm provide new opportunities for applications in molecular science, such as infrared emission experiments, exoplanet spectroscopy and single molecule microscopy. In this tutorial review, we provide background information needed for the non-expert in superconducting light detection to apply these devices in the field of mid-infrared molecular spectroscopy. We present and compare the detection mechanisms and current developments of three types of superconducting detectors: superconducting nanowire single-photon detectors (SNSPDs), transition edge sensors (TESs), and microwave kinetic inductance detectors (MKIDs). We also highlight existing applications of SNSPDs for laser-induced infrared fluorescence experiments and discuss their potential for other molecular spectroscopy applications. Ultimately, superconducting infrared detectors have the potential to approach the sensitivity and characteristics of established single-photon detectors operating in the UV/Vis region, which have existed for almost a century and become an indispensable tool within the field of physical chemistry.

3.
Nat Chem ; 15(2): 194-199, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509851

RESUMO

The transition state of a chemical reaction is a dividing surface on the reaction potential energy surface (PES) between reactants and products and is thus of fundamental interest in understanding chemical reactivity. The transient nature of the transition state presents challenges to its experimental characterization. Transition-state spectroscopy experiments based on negative-ion photodetachment can provide a direct probe of this region of the PES, revealing the detailed vibrational structure associated with the transition state. Here we study the F + NH3 → HF + NH2 reaction using slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled FNH3- anions. Reduced-dimensionality quantum dynamical simulations performed on a global PES show excellent agreement with the experimental results, enabling the assignment of spectral structure. Our combined experimental-theoretical study reveals a manifold of vibrational Feshbach resonances in the product well of the F + NH3 PES. At higher energies, the spectra identify features attributed to resonances localized across the transition state and into the reactant complex that may impact the bimolecular reaction dynamics.

4.
J Phys Chem A ; 126(43): 7962-7970, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36269316

RESUMO

High-resolution photoelectron spectra of cryogenically cooled acetyl anions (CH3CO-) obtained using slow photoelectron velocity-map imaging are reported. The high resolution of the photoelectron spectrum yields a refined electron affinity of 0.4352 ± 0.0012 eV for the acetyl radical as well as the observation of a new vibronic structure that is assigned based on ab initio calculations. Three vibrational frequencies of the neutral radical are measured to be 1047 ± 3 cm-1 (ν6), 834 ± 2 cm-1 (ν7), and 471 ± 1 cm-1 (ν8). This work represents the first experimental measurement of the ν6 frequency of the neutral. The measured electron affinity is used to calculate a refined value of 1641.35 ± 0.42 kJ mol-1 for the gas-phase acidity of acetaldehyde. Analysis of the photoelectron angular distributions provides insight into the character of the highest occupied molecular orbital of the anion, revealing a molecular orbital with strong d-character. Additionally, details of a new centroiding algorithm based on finite differences, which has the potential to decrease data acquisition times by an order of magnitude at no cost to accuracy, are provided.

5.
Nature ; 612(7941): 691-695, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265512

RESUMO

Quantum mechanical tunnelling describes transmission of matter waves through a barrier with height larger than the energy of the wave1. Tunnelling becomes important when the de Broglie wavelength of the particle exceeds the barrier thickness; because wavelength increases with decreasing mass, lighter particles tunnel more efficiently than heavier ones. However, there exist examples in condensed-phase chemistry where increasing mass leads to increased tunnelling rates2. In contrast to the textbook approach, which considers transitions between continuum states, condensed-phase reactions involve transitions between bound states of reactants and products. Here this conceptual distinction is highlighted by experimental measurements of isotopologue-specific tunnelling rates for CO rotational isomerization at an NaCl surface3,4, showing nonmonotonic mass dependence. A quantum rate theory of isomerization is developed wherein transitions between sub-barrier reactant and product states occur through interaction with the environment. Tunnelling is fastest for specific pairs of states (gateways), the quantum mechanical details of which lead to enhanced cross-barrier coupling; the energies of these gateways arise nonsystematically, giving an erratic mass dependence. Gateways also accelerate ground-state isomerization, acting as leaky holes through the reaction barrier. This simple model provides a way to account for tunnelling in condensed-phase chemistry, and indicates that heavy-atom tunnelling may be more important than typically assumed.

6.
Phys Chem Chem Phys ; 24(29): 17496-17503, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35822608

RESUMO

High-resolution anion photoelectron spectra of cryogenically cooled NiO2- anions, obtained using slow photoelectron velocity-map imaging (cryo-SEVI), are presented in tandem with coupled cluster electronic structure calculations including relativistic effects. The experimental spectra encompass the X̃1Σg+ ← X̃2Πg, ã3Πg ← X̃2Πg, and Ã1Πg ← X̃2Πg photodetachment transitions of linear ONiO0/-, revealing previously unobserved vibrational structure in all three electronic bands. The high-resolution afforded by cryo-SEVI allows for the extraction of vibrational frequencies for each state, consistent with those previously measured in the ground state and in good agreement with scalar-relativistic coupled-cluster calculations. Previously unobserved vibrational structure is observed in the ã3Πg and Ã1Πg states and is tentatively assigned. Further, a refined electron affinity of 3.0464(7) eV for NiO2 is obtained as well as precise term energies for the ã and à states of NiO2 of 0.3982(7) and 0.7422(10) eV, respectively. Numerous Franck-Condon forbidden transitions involving the doubly degenerate ν2 bending mode are observed and ascribed to Herzberg-Teller coupling to an excited electronic state.

7.
J Phys Chem A ; 126(14): 2270-2277, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35380441

RESUMO

Fourier transform infrared spectroscopy of laser-irradiated cryogenic crystals shows that vibrational excitation of CO leads to the production of equal amounts of CO2 and C3O2. The reaction mechanism is explored using electronic structure calculations, demonstrating that the lowest-energy pathway involves a spin-forbidden reaction of (CO)2 yielding C(3P) + CO2. C(3P) then undergoes barrierless recombination with two other CO molecules forming C3O2. Calculated intersystem crossing rates support the spin-forbidden mechanism, showing subpicosecond spin-flipping time scales for a (CO)2 geometry that is energetically consistent with states accessed through vibrational energy pooling. This spin-flip occurs with an estimated ∼4% efficiency; on the singlet surface, (CO)2 reconverts back to CO monomers, releasing heat which induces CO desorption. The discovery that vibrational excitation of condensed-phase CO leads to spin-forbidden C-C bond formation may be important to the development of accurate models of interstellar chemistry.

8.
Nature ; 589(7842): 391-395, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33432240

RESUMO

Visible-light absorption and transport of the resultant electronic excitations to a reaction centre through Förster resonance energy transfer1-3 (FRET) are critical to the operation of biological light-harvesting systems4, and are used in various artificial systems made of synthetic dyes5, polymers6 or nanodots7,8. The fundamental equations describing FRET are similar to those describing vibration-to-vibration (V-V) energy transfer9, and suggest that transport and localization of vibrational energy should, in principle, also be possible. Although it is known that vibrational excitation can promote reactions10-16, transporting and concentrating vibrational energy has not yet been reported. We have recently demonstrated orientational isomerization enabled by vibrational energy pooling in a CO adsorbate layer on a NaCl(100) surface17. Here we build on that work to show that the isomerization reaction proceeds more efficiently with a thick 12C16O overlayer that absorbs more mid-infrared photons and transports the resultant vibrational excitations by V-V energy transfer to a 13C18O-NaCl interface. The vibrational energy density achieved at the interface is 30 times higher than that obtained with direct excitation of the interfacial CO. We anticipate that with careful system design, these concepts could be used to drive other chemical transformations, providing new approaches to condensed phase chemistry.

9.
J Chem Phys ; 153(15): 154703, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33092353

RESUMO

CO adsorbed to NaCl(100) exhibits perhaps the weakest possible coupling between the adsorbate and solid. It is, therefore, an ideal system to observe the influence of adsorbate-adsorbate interactions on infrared absorption. In this work, we report polarized FTIR absorption spectra of CO/NaCl(100) as a function of coverage (0.02 ≤ θ ≤ 1 ML), where the coverage has been quantitatively determined by temperature-programmed desorption and molecular beam dosing. We extend a previous semi-empirical model designed to describe the screening of the local electric field due to dipole-dipole interactions in a CO monolayer. The extended model applies to sub-monolayer coverages and describes properly the electric field of the absorbed radiation at the vacuum-substrate interface. Fitting this model to coverage-dependent IR absorption data allows us to derive the vibrational and electronic polarizabilities [χv = 0.0435(14) Å3, χe = 3.30(36) Å3] and the integrated absorption cross section of 2.51(8) × 10-17 cm/molecule for an isolated CO molecule adsorbed at the NaCl (100) surface. The determined integrated absorption cross section is substantially smaller than that of gas phase CO.

10.
Science ; 367(6474): 175-178, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31919218

RESUMO

Molecular isomerization fundamentally involves quantum states bound within a potential energy function with multiple minima. For isolated gas-phase molecules, eigenstates well above the isomerization saddle points have been characterized. However, to observe the quantum nature of isomerization, systems in which transitions between the eigenstates occur-such as condensed-phase systems-must be studied. Efforts to resolve quantum states with spectroscopic tools are typically unsuccessful for such systems. An exception is CO adsorbed on NaCl(100), which is bound with the well-known OC-Na+ structure. We observe an unexpected upside-down isomer (CO-Na+) produced by infrared laser excitation and obtain well-resolved infrared fluorescence spectra from highly energetic vibrational states of both orientational isomers. This distinctive condensed-phase system is ideally suited to spectroscopic investigations of the quantum nature of isomerization.

11.
Science ; 363(6423): 158-161, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30545846

RESUMO

Using a mid-infrared emission spectrometer based on a superconducting nanowire single-photon detector, we observed the dynamics of vibrational energy pooling of carbon monoxide (CO) adsorbed at the surface of a sodium chloride (NaCl) crystal. After exciting a majority of the CO molecules to their first vibrationally excited state (v = 1), we observed infrared emission from states up to v = 27. Kinetic Monte Carlo simulations showed that vibrational energy collects in a few CO molecules at the expense of those up to eight lattice sites away by selective excitation of NaCl's transverse phonons. The vibrating CO molecules behave like classical oscillating dipoles, losing their energy to NaCl lattice vibrations via the electromagnetic near-field. This is analogous to Sommerfeld's description of radio transmission along Earth's surface by ground waves.

12.
Opt Express ; 26(12): 14859-14868, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114791

RESUMO

We evaluate the performance of a mid-infrared emission spectrometer operating at wavelengths between 1.5 and 6 µm based on an amorphous tungsten silicide (a-WSi) superconducting nanowire single-photon detector (SNSPD). We performed laser induced fluorescence spectroscopy of surface adsorbates with sub-monolayer sensitivity and sub-nanosecond temporal resolution. We discuss possible future improvements of the SNSPD-based infrared emission spectrometer and its potential applications in molecular science.

13.
J Chem Phys ; 145(19): 194308, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27875886

RESUMO

A modified semi-empirical Tang-Toennies potential model is used to describe the a3Σu+ potentials of the alkali dimers. These potentials are currently of interest in connection with the laser manipulation of the ultracold alkali gases. The fully analytical model is based on three experimental parameters, the well depth De, well location Re, and the harmonic vibrational frequency ωe of which the latter is only slightly optimized within the range of the literature values. Comparison with the latest spectroscopic data shows good agreement for Na2, K2, Rb2, and Cs2, comparable to that found with published potential models with up to 55 parameters. The differences between the reduced potential of Li2 and the conformal reduced potentials of the heavier dimers are analyzed together with why the model describes Li2 less accurately. The new model potential provides a test of the principle of corresponding states and an excellent first order approximation for further optimization to improve the fits to the spectroscopic data and describe the scattering lengths and Feshbach resonances at ultra-low temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...